# NOT RUN {
#########################
### real data example ###
#########################
# Multiple group path model for facial burns example.
# model syntax with starting values.
burns.model <- 'Selfesteem ~ Age + c(m1, f1)*TBSA + HADS +
start(-.10, -.20)*TBSA
HADS ~ Age + c(m2, f2)*TBSA + RUM +
start(.10, .20)*TBSA '
# constraints syntax
burns.constraints <- 'f2 > 0 ; m1 < 0
m2 > 0 ; f1 < 0
f2 > m2 ; f1 < m1'
# we only generate 2 bootstrap samples in this example; in practice
# you may wish to use a much higher number.
# the double bootstrap was switched off; in practice you probably
# want to set it to "standard".
example1 <- InformativeTesting(model = burns.model, data = FacialBurns,
R = 2, constraints = burns.constraints,
double.bootstrap = "no", group = "Sex")
example1
plot(example1)
##########################
### artificial example ###
##########################
# Simple ANOVA model with 3 groups (N = 20 per group)
set.seed(1234)
Y <- cbind(c(rnorm(20,0,1), rnorm(20,0.5,1), rnorm(20,1,1)))
grp <- c(rep("1", 20), rep("2", 20), rep("3", 20))
Data <- data.frame(Y, grp)
#create model matrix
fit.lm <- lm(Y ~ grp, data = Data)
mfit <- fit.lm$model
mm <- model.matrix(mfit)
Y <- model.response(mfit)
X <- data.frame(mm[,2:3])
names(X) <- c("d1", "d2")
Data.new <- data.frame(Y, X)
# model
model <- 'Y ~ 1 + a1*d1 + a2*d2'
# fit without constraints
fit <- sem(model, data = Data.new)
# constraints syntax: mu1 < mu2 < mu3
constraints <- ' a1 > 0
a1 < a2 '
# we only generate 10 bootstrap samples in this example; in practice
# you may wish to use a much higher number, say > 1000. The double
# bootstrap is not necessary in case of an univariate ANOVA model.
example2 <- InformativeTesting(model = model, data = Data.new,
start = parTable(fit),
R = 10L, double.bootstrap = "no",
constraints = constraints)
example2
# plot(example2)
# }
Run the code above in your browser using DataLab